Part Number Hot Search : 
MP2158 C4000 MBR10 1N4372A 200B6 SA572DR2 HMC128G8 29F800
Product Description
Full Text Search
 

To Download LNK501P1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Design Example Report
Title Specification Application Author Document Number Date Revision 2.2W Charger using LNK501P Input: 90 - 265 Vac Output: 5.5V / 0.4A Cell Phone Charger Power Integrations Applications Department DER-13 February 4, 2004 1.0
Summary and Features
* * * * * * Uses an EF12.6 transformer No Y1 capacitor Meets CISPR-22B No optocoupler Low component count Very low earth leakage current
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.
Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Applications Hotline: Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
Table Of Contents
Introduction................................................................................................................. 3 Power Supply Specification ........................................................................................ 4 Schematic................................................................................................................... 5 PCB Layout ................................................................................................................ 6 Bill of Materials ........................................................................................................... 7 Transformer................................................................................................................ 8 6.1 Transformer Winding .............................................................................................. 8 6.2 Electrical Specifications .......................................................................................... 8 6.3 Transformer Construction ....................................................................................... 9 6.4 Winding Instructions................................................................................................ 9 6.5 Materials ............................................................................................................... 10 6.6 Design Notes ........................................................................................................ 10 7 Performance Data .................................................................................................... 11 7.1 Line and Load Regulation ..................................................................................... 11 7.2 Efficiency .............................................................................................................. 12 7.3 No-Load Input Power ............................................................................................ 13 7.4 Thermal Measurement of Critical Parts................................................................. 13 8 Waveforms ............................................................................................................... 14 8.1 Drain Voltage and Current .................................................................................... 14 8.2 Output Voltage Start-up Profile ............................................................................. 15 8.3 Load Transient Response (0.2 A to 0.4 A Load Step) .......................................... 16 8.4 Output Ripple Measurement ................................................................................. 17 8.4.1 Ripple Measurement Technique.................................................................... 17 8.4.2 Output Voltage Ripple.................................................................................... 18 9 EMI Tests ................................................................................................................. 19 9.1 CSPR22B at 230 Vac ........................................................................................... 19 9.2 CSPR22B at 115 Vac ........................................................................................... 20 10 Revision History ....................................................................................................... 21 1 2 3 4 5 6
Important Notes: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.
Page 2 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
1 Introduction
This document is an engineering report giving performance characteristics of a 2.2W charger/adapter. The supply uses LinkSwitch - an integrated IC combining a 700V high voltage MOSFET, PWM controller, start-up, thermal shutdown, and fault protection circuitry. This document contains the power supply specification, schematic, bill of materials, transformer documentation, and performance data.
Page 3 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
2 Power Supply Specification
Description Input Voltage Frequency No-load Input Power (230Vac) Output Output Voltage 1 Output Current 1 Continuous Output Power Efficiency Operating Temperature Conducted EMI Symbol VIN fLINE Min 90 47 Typ Max 265 64 0.3 Units Vac Hz W V A W 50 % C
At full load @ 230V
Comment
2 Wire- No protective ground
50/60
VOUT IOUT POUT TAMB -5
5.5 0.4 2.2 67
see Figure 1 see Figure 1
CISP22B/EN55022B with Artificial hand connected to output return
Table 1 - Power Supply Specification
V-I CHARACTERISTIC
10 9 8 7 6 Vu ot 5 4 3 2 1 0 0 100 200 300 400 500 Iload 600 700 800 900 1000
HLIMIT LLIMIT
Figure 1: Output V-I Characteristic Envelope Specification
Page 4 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
3 Schematic
D1,D2,D3,D4 1N4005 L1 1mH
D C U1
LNK501
S
1
T1
143T #37
4
18T #32 TIW
5
C5
+
* *
*
6
J1-1 90 - 265 VAC J1-2 RF1 10 Ohm 2W
+
C2 4.7uF 400V
C3 0.22uF 0603
+
11T #36 x4
3
D6 UG1B
R5 J2-1 56K 330uF 0603 10V J2-2
EF12.6 C4 0.1uF, 100V Lp=2.5mH
C1 4.7uF 400V
R1 23.7K 1% D5 1N4937 R2
130R 1% 0603
Figure 2: Schematic diagram
R_CABLE 0.2 R_LOAD 12 R_INT RES 0.5
D2 1N4001 C1 1000uF D1 1N4001
Figure 3: Typical Battery Model
Note: The LinkSwitch is designed for a battery load (see model in Figure 3). If a resistive or electronic load is used, the supply may fail to start up at full load. This is normal. If startup is needed into a resistive load, increase C3 to 1uF.
Page 5 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
4 PCB Layout
Figure 4: PCB Layout and Dimensions (0.001 inch)
Page 6 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
5 Bill of Materials
Item 1 2 3 4 5 6 7 8 9 10 11 12 3 14 15
Quantity 2 1 1 1 4 1 1 1 1 1 1 1 1 1 1
Reference C1, C2 C3 C4 C5 D1, D2, D3, D4 D5 D6 L1 RF1 R2 R1 R5 T1 U1 PCB
Part Description 4.7uF, 400V 0.22uF, 25V,Y5V, 0603 SMD ceramic 0.1uF, 100V, X7R ceramic 330uF, 10V Low ESR E-cap Panasonic FC series 1N4005, 1A, 600V 1N4937, 1A, 600V 200nS, Fast Rectifier UG1B, 1A, 100V, 15nS Ultra Fast Rectifier 1mH Inductor- Tokin part #SBCP-47HY102B 10 ohm, 2W, Fusible- Vitrohm 253-4 Series 130 ohms, 1% 0603 SMD resistor 23.7 ohm 1%; 1/4W resistor 56 ohm; 0603 SMD resistor Custom EF12.6 - Core & Bobbin LINK501P- High Voltage IC; Power Integrations, Inc FR1 - 1oz copper DIM: 1.7" x 1.1"; 1.0mm thick
Page 7 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
6 Transformer
6.1
Transformer Winding
1 5
WDG1 18T 32AWG T.I.W WDG3 133T 37AWG
6
4 4
WDG2 11T 4 x 36AWG
3
Figure 5- Transformer Schematic EF12.6
6.2
Electrical Specifications
60Hz 1minute, from Pins 1-3 to Pins 5-6 All windings open LK with pins 5-6 shorted 3 kV for 1 minute 2450 uH - 2700uH < 60 uH
Electrical Strength Primary Inductance (Pin 1 -Pin 3 @ 42KHZ Primary Leakage Inductance @42KHZ
Page 8 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
6.3
Transformer Construction
1
WDG3
4 4 3 5 6
WDG1 WDG2
Figure 6- Transformer Cross-section EF12.6
6.4
Winding Instructions
Place the bobbin on the winding machine with pins 1-4 on the right side. Winding should be in forward direction. WDG1: Secondary Winding Basic Insulation WDG1: Secondary Winding Basic Insulation WDG2: Cancellation Winding Basic Insulation Start at pin 4 temporarily. Wind 18 turns of item 5 from right to left with tight tension. Wind uniformly in a single layer across entire width of bobbin. Finish on pin 6. Secure winding partially using item 6. Change the start pin connection of secondary winding from pin 4 to pin 5. Continue winding the tape previously placed for one layer with overlap to secure the end wire of WDG1. Start at pin 3. Wind 11 turns with quadfilar of item 3 from right to left with tight tension. Wind uniformly in a single layer across entire width of bobbin. Finish on pin 4. 1 layer of tape (Item 6) for insulation.
Page 9 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13 WDG3: Primary winding 3 layers.
2.2W Cell Phone Charger
February 4, 2004
Start at pin 4. Wind 143 turns of item 4 from right to left in three layers across entire width of bobbin. Wind uniformly all layers with tight tension. Finish on pin 1. Outer Insulation 10 Layer of tape using item 7. Core Assembly Assemble and secure core halves with glue. Shield / Belly Place outside 1 turn of item 8 with tight contact to winding Bans surface. Connect item 8 to pin 3 by item 3. Crop unused pins Remove pin 7 and 8 6.5 Materials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] Description Core: EF12.6 Bobbin: BEF12.6- Horizontal 8-PINS Magnet Wire: #36 AWG Magnet Wire: #37 AWG Triple Insulated wire: # 32 AWG Tape: 3M 1298 Polyester Film (white) 0.311 x 2 mils Tape: 3M 1298 Polyester Film (white) 0.275 x 2 mils Copper Foil: 0.01mils x 6mm Varnish
6.6
Design Notes LNK501P 42KHZ Discontinuous 0.263 A 47 V 90-265VAC
Power Integrations Device Frequency of Operation Mode Peak current Reflected Voltage (Secondary to Primary) AC Input Voltage Range
Page 10 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
7 Performance Data
Measurements were done at room temperature unless otherwise specified. 7.1 Line and Load Regulation
V-I CHARACTERISTIC
10 9 8 7 6 Vout 5 4 3 2 1 0 0 100 200 300 400 500 Iload 600 700 800 900 1000
HLIMIT LLIMIT 115V 230V
Figure 7- Output VI Characteristic at selected input voltages (115V & 230V)
V-I CHARACTERISTIC
10 9 8 7 6 Vout 5 4 3 2 1 0 0 100 200 300 400 500 Iload 600 700 800 900 1000
90V 265V HLIMIT LLIMIT
Figure 8- Output VI Characteristic at selected input voltages (90V & 265V)
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
Page 11 of 23
DER-13 7.2 Efficiency
2.2W Cell Phone Charger
February 4, 2004
The efficiency was measured at max power (~6.4V, 0.4A), using a 16 resistor, at room temperature.
EFFICIENCY CHARACTERISTIC
75
70
65 EFF (%)
Eff
60
55
50 90 115 140 165 VIN (VAC) 190 215 240 265
Figure 9- Efficiency vs. Input voltage
Page 12 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
7.3
No-Load Input Power
NO LOAD CHARACTERISTIC
400
350
300 Pin (mW) 250 200
Pin
150 85 100 115 130 145 160 175 Vin (VAC) 190 205 220 235 250 265
Figure 10- Zero load input power vs. Input line voltage
7.4
Thermal Measurement of Critical Parts
Measurement was done with a 16 resistor load, (~6.4 V, 0.4A) inside a plastic enclosure at 25oC with no airflow. Reference U1 T1 D6 Description LNK501P EF12.6 Transformer UG1B Temperature 65C 58C 69C
Page 13 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
8 Waveforms
8.1 Drain Voltage and Current
Figure 11- Linkswitch (U1) Vdrain and I drain Waveform. Vin=90Vac, Full load; CH3: Vdrain (100V/DIV); CH1: Idrain (0.1A/DIV)
Figure 12- Linkswitch (U1) Vdrain and I drain Waveform. Vin=265Vac, Full load; CH3: Vdrain (100V/DIV); CH1: Idrain (0.1A/DIV)
Page 14 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
8.2
Output Voltage Start-up Profile
Figure 13- Output voltage at start-up, Battery model, Vin=90 Vac
Figure 14- Output voltage at start-up, Battery model, Vin=265 Vac
Page 15 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
8.3
Load Transient Response (0.2 A to 0.4 A Load Step)
Figure 15- Dynamic Load Transient 0.2 A to 0.4 A step load at Vin= 90 Vac CH2: Output Voltage (1V/DIV); CH3: Load Current
Figure 16- Dynamic Load Transient 0.2 A to 0.4 A step load at Vin= 265 Vac CH2: Output Voltage (1V/DIV); CH3: Load Current
Page 16 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
8.4
Output Ripple Measurement
8.4.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 17 and Figure 18. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 F/50 V ceramic type and one (1) 1.0 F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 17 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 18 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added).
Page 17 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
8.4.2 Output Voltage Ripple Measurements were made using resistive load.
Figure 19: Vin= 90 Vac at full load
Figure 20: Vin= 265 Vac at full load
Page 18 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
9 EMI Tests
The EMI tests were done at 230Vac & 115V (Line & Neutral), with a 20 resistive load. 9.1 CSPR22B at 230 Vac
Figure 21 - Conducted EMI, Vin= 230 Vac, 60 Hz line, CSPR22B Limits, NEUTRAL; Output return connected to Artificial hand
Figure 22 - Conducted EMI, Vin= 230 Vac, 60 Hz line, CSPR22B Limits, LINE; Output return floating
Page 19 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
9.2
CSPR22B at 115 Vac
Figure 23- Conducted EMI, Vin= 115V Vac, 60 Hz line, CSPR22B Limits, NEUTRAL, Output return connected to Artificial hand
Figure 24 - Conducted EMI, Vin= 115V Vac, 60 Hz line, CSPR22B Limits, LINE, Output return connected to Artificial hand
Page 20 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13 1-
2.2W Cell Phone Charger
February 4, 2004
10 Revision History
Date February 4, 2004 Author ME Revision 1.0 Description & changes Initial release Reviewed AM/VC
Page 21 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger Notes
February 4, 2004
Page 22 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com
DER-13
2.2W Cell Phone Charger
February 4, 2004
For the latest updates, visit our Web site: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations, Inc. PI Expert and DPA-Switch are trademarks of Power Integrations, Inc. (c) Copyright 2003, Power Integrations, Inc.
WORLD HEADQUARTERS NORTH AMERICA - WEST Power Integrations, Inc. 5245 Hellyer Avenue San Jose, CA 95138 USA. Main: +1*408*414*9200 Customer Service: Phone: +1*408*414*9665 Fax: +1*408*414*9765 CHINA Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu Shenzhen Guangdong, 518031 Phone: +86*755*367*5143 Fax: +86*755*377*9610 APPLICATIONS HOTLINE World Wide +1*408*414*9660
NORTH AMERICA - EAST & SOUTH AMERICA Power Integrations, Inc. Eastern Area Sales Office 1343 Canton Road, Suite C1 Marietta, GA 30066 USA Phone: +1*770*424*5152 Fax: +1*770*424*6567
EUROPE & AFRICA Power Integrations (Europe) Ltd. Centennial Court Easthampstead Road Bracknell Berkshire RG12 1YQ, United Kingdom Phone: +44*1344*462*301 Fax: +44*1344*311*732 JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama 2Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222, Japan Phone: +81*45*471*1021 Fax: +81*45*471*3717
TAIWAN Power Integrations International Holdings, Inc. 2F, #508, Chung Hsiao E. Rd., Sec. 5, Taipei 105, Taiwan Phone: +886*2*2727*1221 Fax: +886*2*2727*1223
KOREA Power Integrations International Holdings, Inc. Rm# 402, Handuk Building, 649-4 Yeoksam-Dong, Kangnam-Gu, Seoul, Korea Phone: +82*2*568*7520 Fax: +82*2*568*7474 APPLICATIONS FAX World Wide +1*408*414*9760
INDIA (Technical Support) Innovatech #1, 8th Main Road Vasanthnagar Bangalore, India 560052 Phone: +91*80*226*6023 Fax: +91*80*228*9727
Page 23 of 23
Power Integrations Tel: +1 408 414 9660 Fax: +1 408 414 9760 www.powerint.com


▲Up To Search▲   

 
Price & Availability of LNK501P1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X